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Stability research at CTR

Flow separation

Flow separation reduces aerodynamic performance

-> How can separation be delayed/avoided most effectively?

-> Most effective mechanism of separation delay
exploits the gradients provided by the mean shear




Stability research at CTR

Flow separation High-speed flows

Transition to turbulence in hypersonic flows

-> Breakdown to turbulence critically increases heat transfer

-> Adjoint-based receptivity and sensitivity analysis




Stability research at CTR

Flow separation High-speed flows Jet noise

Jet screech
-> Critical phenomenon which reduces lifetime of jet engines

-> Global stability analysis to identify mechanism of jet screech




Stability research at CTR

Flow separation High-speed flows Jet noise

Nonlinear stability

Nonlinear optimal disturbances ,«}‘9 ?g ?L’.;

-> Classical linear stability theory valid in the limit of small perturbations

-> Breakdown to turbulence results from strong nonlinear interactions g :
/; /"/‘ p / /




Stability research at CTR

Flow separation High-speed flows Jet noise

Nonlinear stability Atomization

Fragmentation of liquid jets

-> Effective atomization of liquid jets critical in many applications

-> Non-exponential mechanisms can lead to fragmentation




Stability research at CTR

Flow separation High-speed flows Jet noise

Nonlinear stability Atomization Reduced-order modeling

Reduced-order modeling of transitional flows:

-> Accurate yet efficient model of transition to turbulence

-> Physics-based formulation without tunable parameters




Transition to turbulence
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Transition to turbulence relevant for

accurate estimation of drag and heat transfer
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Transition to turbulence

A /ﬁ !-—':?- .

' | LES of transitional boundary layer
Park 2014

10 Re, 15 20
“In order to capture the correct streamwise growth of the disturbance
waves, fine resolution is needed in the laminar region (otherwise the
flow stays laminar).“
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" > Proper treatment of pre-transitional flow
region in WMLES can require 10 to 100 times
more points than in turbulent regime

“Thus, we conclude that a key issue in the
application of WMLES will be the modeling of
the laminar and transitional region.”

NASA CFD VISION 2030 (Slotnick et al. 2014
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Stages of the transition process

Natural transition in boundary layer L& \

Environmental
disturbances
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Transition scenarios

NATURAL BYPASS CROSSFLOW

* Low levels of external *  Moderate levels of external * Inflectional (exponential) primary
disturbances disturbances disturbance

*  Exponential amplification of * Algebraicamplification of * Rapid breakdown to turbulence
primary disturbances (TS waves) primary disturbances (streaks)

e Classical configurations: * Exponential secondary
H/K-type (Herbert 1988, instability

Kachanov 1984)
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Transition scenarios

NATURAL

BYPASS

CROSSFLOW

* Low levels of external
disturbances

*  Exponential amplification of
primary disturbances (TS waves)

* Classical configurations:
H/K-type (Herbert 1988,
Kachanov 1984)
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Moderate levels of external
disturbances

Algebraic amplification of
primary disturbances (streaks)
Exponential secondary
instability

Inflectional (exponential) primary
disturbance
Rapid breakdown to turbulence
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Parabolized Stability Equations  (nerbert 1002)

Laminar pre-transitional boundary layer
Blasius profile
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Instabilities
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Parabolized Stability Equations  (nerbert 1002)

Sufficient distance to leading edge

' Re»1
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Parabolized Stability Equations

Separation of the state

q(z,y) = (@v,w,p) &

Perturbations +

WWVRAWWW

q, (iE, Y, =, t) - (u,a ’UI, wlyp,)T
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Parabolized Stability Equations

Separation of the perturbations

q(z,y) = (@v,w,p) &

Slow

Perturbations / /+A>n-Parallel effects
\N\N\N\AN\N\,\ \ VVWVVVW\
¢ (2,9,2,1) = (', v/, 0, p)’ Fast \/\/\V/\V/VW\

Wave oscillations
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Parabolized Stability Equations

Separation of the perturbations

Base /g/
( p)’

q(z,y) = (u,v,w,

AN
Slow
Perturbations / /+/
W[\\RIW\M N VW
qd (z,y,2,t) = (u',v',w',p))" Fast \/\/\/\/\/\/\

Subject to

Ansatzz ¢’ (z,y,2,t) =G (z,y)exp (i(Bz + wt)) exp (1/ a(§) df) ai/ FEE G — 0
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Parabolized Stability Equations

Derivation

¢ @y, 2,8) = @ (2, ) exp (i (B2 + wt)) exp (i / o (€) dg)
|

Navier-Stokes

O (Re_l)

v

Parabolized Stability Equations (PSE)
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Parabolized Stability Equations

For the nth harmonic in span and the mt" harmonic in time:

0q 9°%q 0q
n,m C n,m D n,m
dy * Oy? i Ox

Nonlinear coupling of harmonics

A
= Fn,m

A4,,, +B

with N Voo

A_ 0 r+% 0 0 B_| 0V 01
%—W %—W roinp ’ 10 0 V 0}’

@ Y

i 0 inB 0 | 0 1 0 0]

— 3 0 0 0 (U 0 0 1]

0 —+= 0 0 0O U 0 0
€=l 0 0 -L ol D=109 0 v ol

0 0 0 0 1.0 0 0

where 7 = —imw + oy U + inffW + (a2, +n?p?)

Stanford




Parabolized Stability Equations

Comparison to CFD

Wave represented
‘ on discrete grid

|'|H|'I
! MI’ Ax < \

SN\

Instability wave
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Parabolized Stability Equations

Comparison to CFD

Wave represented
‘ on discrete grid

’ PN ‘ ‘ PN
Dl
o Ax <\
\/\/\ PSE
q(z,v) - Only the slow-changing part
requires support on discrete grid
X -> Significantly larger Ax

\NN oo (i [ a@x)

Instability wave
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Parabolized Stability Equations

Comparison to CFD

CFD PN ‘ ’ PN ‘ Wave represented
e on discrete grid CFD PSE
Instability wave ’M’MI!H’I Ac <) i
X Limited

- . Integration .

Time harmonic

N PSE expansion
q(z,y) Limited

Span FD/FV/Spectral harmonic

X expansion

FD/FV/Spectral Spectral

T Normal
\NN oo (i a@u) —

Pressure 2D/3D ellipticity

ellipticity

—> PSE offer substantial computational savings
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Parabolized Stability Equations

Capabilities
Compatible with Incompatible with
* Growth of exponential instabilities *  Unsteady flows
 Nonparallel effects * Flows atlow Re, including leading edges
(boundary layer growth) *  Separation/recirculation
« Nonlinear effects (mode interaction) *  Turbulence, including local spots

» Three-dimensional flows (swept wings)
* Moderate surface curvature (attached flow)
* Moderate pressure gradient
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Numerical experiments

. Direct Numerical Simulation
. Zero-pressure-gradient flat-plate boundary layer P
. H-type natural transition (Herbert 1988) X

Simulation code:

. 2" order finite difference
. Staggered mesh
. Fractional step method
U, . MPI parallelized

/

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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Numerical experiments

. Direct Numerical Simulation
. Zero-pressure-gradient flat-plate boundary layer
. H-type natural transition (Herbert 1988)

,505%0

Simulation code
. 2nd order finite difference

309, 1 Staggered mesh
. . . Fractional step method
- lonal gri
‘<@2 A Computational grid . MPI parallelized
Re\ Ax+ Ay+min AZ+ N

72 |03 5.1 |250x10°
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N Uum erica l experi me ntS Convective outflow

. Direct Numerical Simulation
. Zero-pressure-gradient flat-plate boundary layer
. H-type natural transition (Herbert 1988)

Boundary conditions

Blasius

Parameters inflow (Joslin etal. 1993)
wrsV/ U2, Aqs/U,, Aow/U.,
1.23x104 4.80x103 | 1.45%10-5

Blasius
+ TS wave
+oblique mode

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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Numerical experiments

Considered setups

Casel Caselll Casellll
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Numerical experiments

Considered setups

Casel

Stanford



DNS

Is
. . W, Osy
Grid points - a/L,,Orm Mace
Pre-transitional: 100M
Transitional+turbulent: 150M




DNS

Grid points IWa/’*n r

Pre-transitional: 100M
Transitional+turbulent: 150M

Friction Coefficient

o Laminar
[ -- DNS Sayadi et al. (2013)
| —DNS




Numerical experiments

Considered setups

Casell

Az/do = 0.3 Az /8o = 0.05 Azt =172
Aymin/(SO = 0.001 Aymin/(SO = 0.003 Ayr_;in =0.3
7 Fourier modesin z Az/dy = 0.03 Azt =51
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PSE+DNS

Grid points IWa/’*n

Pre-transitional: 0.2M (v 99.8%)
Transitional+turbulent: 150M

Friction Coefficient

?SE/,ASQ - . < = " ol
R ” ) - <l o » o Laminar
ST -- DNS Sayadi et al. (2013)

| —DNS
— PSE + DNS
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Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)



Pre-transitional region

FFTintand z
u(z,y,2,t) = u(x,y, k,,w)
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Pre-transitional region

Is, So
= accurately captured by the PSE ""a//~no S"'face

|U| at y/50 = 0.2

0L, @9, o oo ocoood _ DNs
-0- PSE

FFTintand z
u(z,y,2,t) = u(x,y, k,,w)




Pre-transitional region

Flow structure

How important is the local structure of the flow
for the downstream solution?
* Test: Randomized PSE modes with same total energy

Stanford



Pre-transitional region

Flow structure

How important is the local structure of the flow
for the downstream solution?
* Test: Randomized PSE modes with same total energy

-> Structure provided by the PSE solution critical for the downstream flow

Stanford



Turbulentregion _ _o® g o, 2um,

Flow statistics
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--PSE+DNS °|
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Numerical experiments

Considered setups

fy<v~"3

A

Casel lll

Az/éo = 0.3 Az/8 = 0.31 Azt = 45 Azt = 45
Aymin/(sO — 0001 Aymin = 0.010 Ayr—;in =1 Ayr_;in — 18
7 Fourier modes in z Az/do = 0.13 Azt =22 Azt =29
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Large-eddy simulation

 Dynamic Smagorinsky SGS model
Germano et al., Phys. Fluids 1991; Lilly, Phys. Fluids 1992

SGS st{ess closure:

with Smagorinsky coefficient
1 2
C = 5 (Li; Mi;/M35)
using the resolved turbulent stress

i — =0Tk = 2CA2%|5|S;; _— A A
Tj 3 _]Tk:k | | J . 6_ a_ L’Lj — _uzug _|_ /u’z/u,]
. — . 'U;Z u] —_—~ A A —_
based on large-scale strain S;; = 5 (@ + 8—93) and M;; = A?|5|S;; — A%[5|S;;
e Eq u i li bri u m Wall mOd el LES domain Embedded RANS domain

Kawai & Larsson, Phys. Fluids 2012

|

Solution of ODE near wall: % [(uﬂm)%] =0

with eddy viscosity uy taken from mixing-length hypothesis
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DNS

Grid points : IWa/’*n r

Pre-transitional: 100M
Transitional+turbulent: 150M

Friction Coefficient

o Laminar
[ -- DNS Sayadi et al. (2013)
| —DNS

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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PSE+WRLES

Grid points Yl ace

Pre-transitional: 0.2M (v 99.8%)
Transitional+turbulent: 4M (v 98.4%)

e = R N N P~ Friction Coefficient
=\ 0 Bt 7 S g B ‘103
. . ; o Laminar
[ --DNS Sayadi et al. (201
4| —DNS
— PSE + DNS
Cf 3| —PSE+WRLES

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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PSE+WMLES

DNS | - Friction Coefficient

v

vertical velocity in wall-parallel planes

Turbulent |
correlation

2 4 6 8 10 12
x 10°

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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PSE+WMLES

DNS

vertical velocity in wall-parallel planes

-0.02 0 0.02

v

Coarse LES with no-sli

Friction Coefficient

6)‘-10_3
J DNS
S| Turbulent |
correlation
2.
A Coarse LES _
. 0499090099909
2 4 6 8 10 12
Re, x105

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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PSE+WMLES

DNS

vertical velocity in wall-parallel planes

0.02 0 0.02
Vv

Coarse LES with no-sli

Friction Coefficient

L

-
~ao
-

DNS

----------- o.q -0. 0O _Q-C.:
Turbulent ]|

correlation
Coarse LES
. 0090900095049
2 4 6 8 10 12
Re, x10S

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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PSE+WMLES

002 0 0.02
DNS V e
vertical velocity in wall-parallel planes | DNS
== WMLES
Coarse LES with no-sli T .
S PSE+ Turbulent

WMLES correlation

Coarse LES

2 e 6 8 10 12

Re, x 10°
Re,
Re, x10° Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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Turbulent region il o Wt
o a

Flow statistics

e / o
U Y " , :
Pl I<'$ / Grid points
<

250M — DNS

150M - PSE + DNS
4M — PSE + WRLES
1M — PSE + WMLES

Lozano-Duran, Hack & Moin, Phys. Rev. Fluids (2018)
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Transition scenarios

NATURAL

BYPASS

CROSSFLOW

Low levels of external
disturbances

Exponential amplification of
primary disturbances (TS waves)
Classical configurations:
H/K-type (Herbert 1988,
Kachanov 1984)

Moderate levels of external
disturbances

Algebraic amplification of
primary disturbances (streaks)
Exponential secondary
instability

Inflectional (exponential) primary
disturbance
Rapid breakdown to turbulence
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Bypass transition

* Faster path to turbulence than transition via Tollmien-Schlichting waves
* Observed in boundary layers exposed to free-stream turbulence (turbo machinery)

* Mediated by the formation of highly energetic streaks inside the boundary layer

* Capturing the mean flow distortion is essential to predict bypass transition

Hack & Zaki, J. Fluid Mech. (2016)
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Streak formation via lift-up

Streaks are the outcome of the displacement of the mean momentum of the boundary layer
by wall-normal perturbations (Landahl 1975)

 Ejections lead to low-speed streaks near the edge of the boundary layer

« Sweeps produce high-speed streaks near the wall

A Boundary layer profile
y U,

Low-speed streak

) V’>OTEjection Vkoi‘i Sweep

High-speed streak
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Model problem: periodic streaks

Upstream perturbation:
counter-rotating vortices
Vector v’, w’ — cross-section

3
O DD NN DI SN Flow response: streaks
AU IR B S Isosurfaces u’ — top view
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0 ' - - -> Transient growth écenerates streaks
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Mean-flow distortion

Low-amplitude (linear) streaks:

|, 0008

Stanford




Mean-flow distortion

Low-amplitude (linear) streaks:

|, 0000

High-amplitude (nonlinear) streaks:

1,0%90°
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Mean-flow distortion

Low-amplitude (linear) streaks:

|, 0000

Mean flow distortion

High-amplitude (nonlinear) streaks: y

{LQ—QGQ < u

»
L

-> High-amplitude streaks modify the mean shear of the boundary layer
-> Critically affects the amplification of secondary instabilities

Stanford




Mean-flow distortion with PSE

In classical PSE, Mean Flow Distortion (MFD) is handled as a (f=0,w=0) instability mode
and added to the Blasius solution

Res,,.. = 162 max (||u||) = 0.0373
inlet
10
R
1V TINN L LTI
ST >\
5° /f;//:§§§ 772:\\§§
S a7 =N \\//~\\
2 4 =2 INY) }
NSS4
° 00> 215 -510 75. 1OIO 1?15‘ iSO 17.5

0 200 400 600 800
X/Opias

—> PSE computation of mean-flow distortion fails for high amplitudes
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Spatial Perturbation Equations (SPE)

New framework for computing the spatial evolution of nonlinear perturbations
In the SPE, the base flow is computed by marching the boundary layer equations

Classic boundary layer equations

@4_@_0
or Oy
L ow 0P (o)
ox dy p Ox oy? )
1 0P
ity o
p 0y
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Spatial Perturbation Equations (SPE)

New framework for computing the spatial evolution of nonlinear perturbations
In the SPE, the base flow is computed by marching the boundary layer equations
Addition of forcing terms (averaged nonlinear terms) introduces MFD into the base flow

Classic boundary layer equations MFD forcing terms
ou  0v
5 oy ="

—@4_@@4_1@_1/ @ - 1’0“/
“ oy? ) Y ox;

1@ _ o’
p Oy g Oz

-> Base flow with MFD obtained from streamwise marching procedure
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SPE mean flow distortion

Res,,,. = 162 X (||u|]) = 0.0373
10 inlet
A
[N A N
ST >\
56 f//_\/—<§\ /72—_§\§
L TN
(@2
2 A V/ kv
° 00. 25- 5IO | 7‘I5‘ 10IO 12I.5 15IO 17.5

-> SPE captures mean-flow distortion accurately
-> Prerequisite for computing bypass transition
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Conclusions

Parabolized stability equations (PSE) provide an accurate representation of the pre-transitional region including

Accurate identification of onset of transition

Capturing of growth of individual harmonics

Substantial computational savings: from 100M to 0.2M points in pre-transitional regime
Combination with WMLES reduces computational cost by factor of 250 compared to DNS

Computation of bypass transition and accurate capturing of mean-flow distortion poses challenges

Novel SPE framework computes mean-flow distortion as part of the base flow

CENTER FOR TURBULENCE RESEARCH




